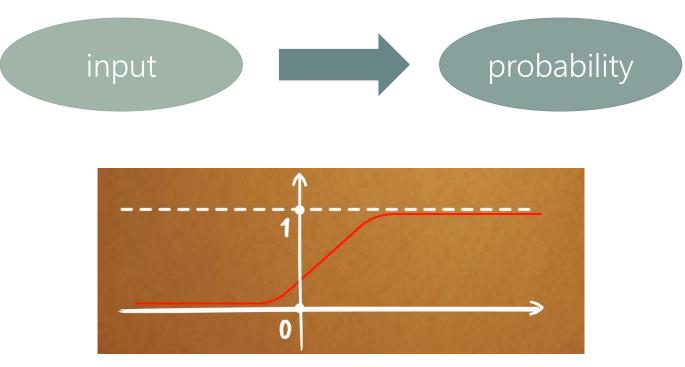
COURSE NOTES: LOGISTIC REGRESSION

Logistic regression vs Linear regression

Logistic regression implies that the possible outcomes are **not** numerical but rather categorical.


Linear regression model: $Y = \theta_0 + \theta_1 X_1 + ... + \theta_k X_k + \varepsilon$

Logistic regression model:
$$p(X) = \frac{e(\theta_0 + \theta_1 X_1 + ... + \theta_k X_k)}{1 + e(\theta_0 + \theta_1 X_1 + ... + \theta_k X_k)}$$

Logistic model

The logistic regression predicts the probability of an event occurring.

Visual representation of a logistic function

Logistic regression model

Logistic regression model

$$\frac{p(X)}{1-p(X)} = e^{\left(\mathcal{B}_{0} + \mathcal{B}_{1}X_{1} + \dots + \mathcal{B}_{k}X_{k}\right)}$$

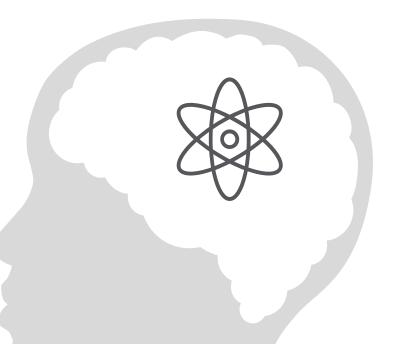
The logistic regression model is not very useful in itself. The right-hand side of the model is an exponent which is very computationally inefficient and generally hard to grasp.

Logit regression model

When we talk about a 'logistic regression' what we usually mean is 'logit' regression – a variation of the model where we have taken the log of both sides.

$$\log \left(\frac{p(X)}{1-p(X)}\right) = \log(e^{(\beta_0 + \beta_1 x + \dots + \beta_k x_k)})$$
$$\log \left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 x + \dots + \beta_k x_k$$

 $\log (\text{odds}) = \beta_0 + \beta_1 x + \cdots \beta_k x_k$


$$\mathsf{ODDS} = \frac{p(X)}{1 - p(X)}$$

Coin flip odds:

The odds of getting heads are 1:1 (or simply 1)

Fair die odds:

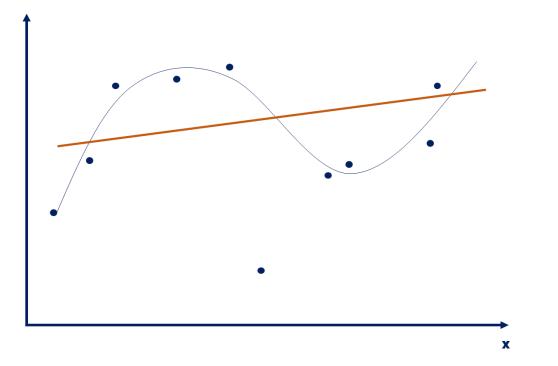
The odds of getting 4 are 1:5 (1 to 5)

365 VDataScience

Logistic regression model

		Dep. Varia	ble:		У	No. Obs	ervation	s:	518		McFadden's pseudo-R-squared, used	
The dependent variable, y; This is the variable we are trying to predict.		Мо	del:		Logit	Dfl	Residual	s:	516	~	for comparing variations of the same model. Favorable range [0.2,0.4].	
		Meth	od:		MLE		Df Mode	əl:	1			
		D	ate: Th	u, 28 Nov	2019	Pseu	do R-squ	ı.: O	.2121		Log- Likelihood* (the log of the likelihood function). Always negative. We aim for this to be as high as	
Indicates whether our model found a solution or not.	-	Ti	me:	15:	:01:00	Log-L	ikelihoo.	d:2	82.89			
		converç	jed:	True		LL-Null:		II:3	-359.05		possible.	
						LL	R p-valu	e: 5.38	7e-35		Log- Likelihood -Null is the log- likelihood of a model which has no independent variables. It is used as the benchmark 'worst' model.	
Coefficient of the intercept, b_0 ; sometimes we refer to this variable as constant or bias.			coef	std err	z	P> z	[0.025	0.975]				
	d	— const	-1.7001	0.192	-8.863	0.000	-2.076	-1.324		l '	the benchmark worst model.	
		duration	0.0051	0.001	9.159	0.000	0.004	0.006			Log- Likelihood Ratio p-value measures of our model is statistically	

Coefficient of the independent variable i: b_i; this is usually the most important metric – it shows us the relative/absolute contribution of each independent variable of our model. For a logistic regression, the coefficient contributes to the log odds and cannot be interpreted directly.


> *Likelihood function: a function which measures the goodness of fit of a statistical model. MLE (Maximum Likelihood Estimation) tries to maximize the likelihood function.

365√DataScience

different from the benchmark 'worst' model.

Underfitting

Overfitting

The model has not captured the underlying logic of the data.

Our training has focused on the particular training set so much it has "missed the point".

365 **V** DataScience