Course notes: Logistic

 Regression
Logistic regression vs Linear regression

Logistic regression implies that the possible outcomes are not numerical but rather categorical.

Examples for categories are:

- Yes / No
- Will buy / Won't Buy
- 1 / 0

Linear regression model: $Y=b_{0}+b_{1} X_{1}+\ldots+b_{k} X_{k}+\varepsilon$
Logistic regression model: $p(X)=\frac{e^{\left(B_{0}+b_{1} X_{1}+\ldots+b_{k} X_{k}\right)}}{1+e^{\left(B_{0}+b_{1} X_{1}+\ldots+b_{k} X_{k}\right)}}$

Logistic model

The logistic regression predicts the probability of an event occurring.

Visual representation of a logistic function

Logistic regression model

Logistic regression model

$$
\frac{p(X)}{1-p(X)}=e^{\left(B_{0}+B_{1} X_{1}+\ldots+B_{k} X_{k}\right)}
$$

The logistic regression model is not very useful in itself. The right-hand side of the model is an exponent which is very computationally inefficient and generally hard to grasp.

Logit regression model

When we talk about a 'logistic regression' what we usually mean is 'logit' regression - a variation of the model where we have taken the log of both sides.

$$
\begin{aligned}
& \log \left(\frac{p(X)}{1-p(x)}\right)=\log \left(e^{\left(\beta_{0}+\beta_{1} x+\cdots \beta_{k} x_{k}\right)}\right) \\
& \log \left(\frac{p(X)}{1-p(x)}\right)=\beta_{0}+\beta_{1} x+\cdots \beta_{k} x_{k} \\
& \log (\text { odds })=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \boldsymbol{x}+\cdots \boldsymbol{\beta}_{\boldsymbol{k}} \boldsymbol{x}_{\boldsymbol{k}}
\end{aligned}
$$

ODDS $=\frac{p(X)}{1-p(X)}$

Coin flip odds:

The odds of getting heads are 1:1 (or simply 1)

Fair die odds:

The odds of getting 4 are 1:5 (1 to 5)

$365 \sqrt{ }$ DataScience

Logistic regression model

Coefficient of the independent variable i : b_{i}; this is usually the most important metric - it shows us the relative/absolute contribution of each independent variable of our model. For a logistic regression, the coefficient contributes to the log odds and cannot be interpreted directly.

Underfitting

Overfitting

The model has not captured the underlying logic of the data.

Our training has focused on the particular training set so much it has "missed the point".

