Symmetry of Combinations

Let's see the algebraic proof of the notion that selecting p-many elements out of a set of n is the same as omitting n - p many elements.

For starters, recall the combination formula:

$$
C(n, p)=\frac{n!}{(n-p)!p!}
$$

If we plug in $n-p$ for p, we get the following:
$C(n, n-p)=\frac{n!}{(n-(n-p))!(n-p)!}=\frac{n!}{(n-n+p))!(n-p)!}=\frac{n!}{p!(n-p)!}=\frac{n!}{(n-p)!p!}=C(n, p)$

Therefore, we can conclude that $\boldsymbol{C}(\boldsymbol{n}, \boldsymbol{p})=\boldsymbol{C}(\boldsymbol{n}, \boldsymbol{n}-\boldsymbol{p})$.

