BASIC PROBABILITY

The likelihood of an event occurring

$$
\begin{gathered}
P(X)=\frac{\text { preferred outcomes }}{\text { sample space }} \\
P(A, B)=P(A)+P(B)
\end{gathered}
$$

EXPECTED VALUES

Experimental Probability

Expected Value

Observing an event and record the outcome

Collection of one or multiple trials

Probability of an event based on the experiment

Specific outcome we expect to occur when we run an experiment

$$
E(X)=n \cdot p
$$

Numeric

$$
\mathrm{E}(\mathrm{X})=\sum_{i=1}^{n} \mathrm{n}_{\mathrm{i}} \cdot \mathrm{p}_{\mathrm{i}}
$$

Probability frequency distribution

Why?

Frequency
Frequency distribution
table

How?

FREQUENCY

Collection of the probabilities for each possible outcome of an event.

To try and predict future events when the expected value is unattainable.

Number of times a given value or outcome appears in the sample space.

Table that matches each distinct outcome in the sample space to its associated frequency.

By dividing every frequency by the size of the sample space.

COMPLEMENTS

Everything an event is not

$$
A^{\prime}=\operatorname{Not} A
$$

COMBINATORICS

The likelihood of an event occurring

$$
\begin{gathered}
P(X)=\frac{\text { preferred outcomes }}{\text { sample space }} \\
P(A, B)=P(A)+P(B)
\end{gathered}
$$

Without repetition
 PERMUTATIONS (arrange)

With repetition

How many ways are to arrange 3 letters a,
b, c ?

How many ways are to arrange 2 letters a and 2 letters b?

$$
P_{n_{1}, \ldots, n_{k}}=\frac{\left(\sum n_{i}\right)!}{\prod n_{i}!}
$$

VARIATIONS
 (pick and arrange)

$$
V_{p}^{n}=P_{p}^{n}=\frac{n!}{(n-p)!}
$$

Hoy many words of 2 different letters can you make with 4 letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$?

Hoy many words of 2 different letters can you make with 4 letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$?

$$
\bar{V}_{p}^{n}=n^{p}
$$

COMBINATIONS

(pick)
Hoy many ways are there to pick 2 different letters out of 4 letters a, b, c, d ?

Hoy many ways are there to pick 2 letters out of 4 letters a, b, c, d?

FACTORIALS

$0!=1$
If $\mathrm{n}<0, \mathrm{n}!$ doesn't exist

$$
\text { If } n>0, n>k
$$

$$
\begin{gathered}
(n+k)!=n!\cdot(n+1) \cdot \ldots \cdot(n+k) \\
(n-k)!=\frac{n!}{(n-k+1) \cdot \ldots \cdot n} \\
\frac{n!}{k!}=(k+1) \cdot \ldots \cdot n
\end{gathered}
$$

BAYESIAN INFERENCE

$x \in A, x \notin A$: element x is a part of set $\mathrm{A}(\mathrm{x}$ NOT in A$)$
$\mathrm{A} \ni x$: set A contains element x

$\forall x$: for all/any x

$A \subseteq B: \mathrm{A}$ is a subset of B

$$
A \cap B=\varnothing
$$

All complements are mutually exclusive, but not all mutually exclusive sets are complements
$A \cap B \quad$ Satisfies all the events simultaneously

$$
\text { Union } \quad A \cup B=A+B-A \cap B
$$

Satisfies at least one of the events

Completely

 overlapIndependent Events

$$
P(A \mid B)=P(A)
$$

Theoretically probability remains unaffected by other events

Dependent Events

$$
P(A \mid B) \neq P(A)
$$

Probabilities of dependent events vary as conditions change

Conditional Probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- B has occurred
- Only elements of the intersection can satisfy A
- $P(A \mid B)$ not the same meaning as $P(B \mid A)$

Law of Total Probability

Additive Law

Multiplication Rule

$$
\begin{aligned}
& A=B_{1}+\ldots+B_{n} \\
& P(A)=P\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)+\ldots+P\left(A \mid B_{n}\right) \cdot P\left(B_{n}\right)
\end{aligned}
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
P(A \cap B)=P(A \mid B) \cdot P(B)
$$

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

DISTRIBUTIONS

Show the possible values a random variable can take and how frequently they occur.

- Y actual outcome
- Y one of the possible outcomes
- $P(Y=y)=p(y)$
- Probability function: function that assigns a probability to each distinct outcome in the sample space

Population
Mean
Variance
Standard Deviation

Sample $\overline{\mathbf{X}}$

DISCRETE

- Finite number of outcomes
- Can add up individual value to determine the probability of an interval
- Expressed with table, graph or piecewise function

Expected values might be unattainable

Uniform

- $\quad Y \sim U(a, b)$
- $\quad Y \sim U(a)$ for categorical
- Outcomes are equally likely
- No predictive power
- $\mathrm{Y} \sim \operatorname{Bern}(\mathrm{p})$
- 1 trial, 2 possible outcomes
- $E(Y)=p$
- $\quad \sigma^{2}(Y)=p \cdot(1-p)$

Binomial

- $\quad Y \sim B(n, p)$
- Measures the p 1 of the possible outcomes over n trials
- $P(Y=y)=p(y)=C(y, n) \cdot p^{y} \cdot(1-p)^{n-y}$
- $E(Y)=n \cdot p$
- $\quad \sigma^{2}(Y)=n \cdot p \cdot(1-p)$
- $\quad Y \sim \operatorname{Po}(\lambda)$
- Measures the frequency over an

Poisson

 interval of time or distance $(\lambda \geq 0)$- $P(Y=y)=p(y)=\frac{\lambda^{Y}}{y!e^{-\lambda}}$
- $E(Y)=\lambda$
- $\sigma^{2}(\mathrm{Y})=\lambda$

DISTRIBUTIONS

- PDF: Probability Density Function

 - CDF: Cummulative Density Function
CONTINUOUS

- Infinitely many consecutive possible values
- Cannot add up individual value to determine the probability of an interval
- Expressed with graph or continuous function
- $P(Y=y)=p(y)=0$ for any individual value $y(P(Y<y)=P(Y \leq y)$

Normal

- $\quad Y \sim N\left(\mu, \sigma^{2}\right)$
- $\quad E(Y)=\mu$
- $\sigma^{2}(\mathrm{Y})=\sigma^{2}$
- 68% of all ist values fall in the interval ($\mu-\sigma, \mu+\sigma$)
- $Y \sim t(k)$

Students' \mathbf{T}

- Small sample size approximation of a Normal (accounts for extreme values better)
- If $k>1: E(Y)=\mu$ and $\sigma^{2}(Y)=s 2 \cdot k /(k-2)$

Chi-Squared

- $\quad Y \sim \chi 2(\lambda)$
- Square of the t-distribution
- $E(Y)=k$
- $\sigma^{2}(\mathrm{Y})=2 \mathrm{k}$
- $\quad Y \sim \operatorname{Exp}(\lambda)$
- $E(Y)=1 / \lambda$
- $\sigma^{2}(Y)=1 / \lambda^{2}$

Logistic

- $\quad Y \sim \operatorname{Logistic}(\mu, s)$
- Continous variable inputs and binary outcome
- CDF \uparrow when values near the mean
- $\quad \downarrow s$, the quicker it reaches values close to 1
- $E(Y)=\mu$
- $\sigma^{2}(\mathrm{Y})=\mathrm{s}^{2} \cdot \mathrm{n}^{2} / 3$

