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Distributions

In statistics, when we talk about distributions we usually mean

probability distributions.

Definition (informal): A distribution is a function that shows

the possible values for a variable and how often they occur.

Definition (Wikipedia): In probability theory and statistics, a

probability distribution is a mathematical function that, stated

in simple terms, can be thought of as providing the

probabilities of occurrence of different possible outcomes in

an experiment.

Examples: Normal distribution, Student’s T distribution, Poisson

distribution, Uniform distribution, Binomial distribution

Graphical representation

It is a common mistake to believe that the distribution is the

graph. In fact the distribution is the ‘rule’ that determines how

values are positioned in relation to each other.

Very often, we use a graph to visualize the data. Since

different distributions have a particular graphical

representation, statisticians like to plot them.

Examples:

Uniform distribution Binomial distribution

Normal distribution Student’s T distribution

Definition
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The Normal Distribution

The Normal distribution is also known as Gaussian

distribution or the Bell curve. It is one of the most

common distributions due to the following reasons:

• It approximates a wide variety of random variables

• Distributions of sample means with large enough

samples sizes could be approximated to normal

• All computable statistics are elegant

• Heavily used in regression analysis

• Good track record

Examples:

• Biology. Most biological measures are normally

distributed, such as: height; length of arms, legs,

nails; blood pressure; thickness of tree barks, etc.

• IQ tests

• Stock market information

𝑁~(𝜇, 𝜎2)
N stands for normal;

~ stands for a distribution;
μ is the mean;

𝜎2 is the variance.
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The Normal Distribution

0

𝝁 = 𝟕𝟒𝟑
Origin

0

𝝁 = 𝟒𝟕𝟎

𝝈 = 𝟏𝟒𝟎

0

𝝁 = 𝟗𝟔𝟎

𝝈 = 𝟏𝟒𝟎 𝝈 = 𝟏𝟒𝟎

Controlling for the standard deviation

Keeping the standard deviation constant, the graph 

of a normal distribution with:

• a smaller mean would look in the same way, but 

be situated to the left (in gray)

• a larger mean would look in the same way, but 

be situated to the right (in red)
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The Normal Distribution

0

𝝁 = 𝟕𝟒𝟑
Origin

𝝈 = 𝟏𝟒𝟎

0

0

𝝁 = 𝟕𝟒𝟑
𝝁 = 𝟕𝟒𝟑

𝝈 = 𝟕𝟎

𝝈 = 𝟐𝟏𝟎

Controlling for the mean

Keeping the mean constant, a normal distribution 

with:

• a smaller standard deviation would be situated in 

the same spot, but have a higher peak and 

thinner tails (in red)

• a larger standard deviation would be situated in 

the same spot, but have a lower peak and fatter 

tails (in gray)

http://365datascience.com/?utm_source=course_notes_confidence


The Standard Normal Distribution

𝑁~(0,1)

The Standard Normal distribution is a particular case

of the Normal distribution. It has a mean of 0 and a

standard deviation of 1.

Every Normal distribution can be ‘standardized’ using

the standardization formula:

𝑧 =
𝑥 − 𝜇

𝜎
A variable following the Standard Normal

distribution is denoted with the letter z.

Why standardize?

Standardization allows us to:

• compare different normally distributed datasets

• detect normality

• detect outliers

• create confidence intervals

• test hypotheses

• perform regression analysis

Rationale of the formula for standardization:

We want to transform a random variable from 𝑁~ μ, 𝜎2 to 𝑁~(0,1). Subtracting the mean from all observations would cause a

transformation from 𝑁~ μ, 𝜎2 to 𝑁~ 0, 𝜎2 , moving the graph to the origin. Subsequently, dividing all observations by the standard

deviation would cause a transformation from 𝑁~ 0, 𝜎2 to 𝑁~ 0,1 , standardizing the peak and the tails of the graph.
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The Central Limit Theorem

The Central Limit Theorem (CLT) is one of the greatest statistical insights. It states that no matter the underlying distribution of the

dataset, the sampling distribution of the means would approximate a normal distribution. Moreover, the mean of the sampling

distribution would be equal to the mean of the original distribution and the variance would be n times smaller, where n is the size of the

samples. The CLT applies whenever we have a sum or an average of many variables (e.g. sum of rolled numbers when rolling dice).

The theorem Why is it useful? Where can we see it?

➢ No matter the distribution

➢ The distribution of 𝑥1, 𝑥2, 𝑥3, 𝑥4 ,

… , 𝑥𝑘 would tend to 𝑁~ μ,
𝜎2

𝑛

➢ The more samples, the closer to

Normal ( k -> ∞ )

➢ The bigger the samples, the closer

to Normal ( n -> ∞ )

The CLT allows us to assume normality

for many different variables. That is very

useful for confidence intervals,

hypothesis testing, and regression

analysis. In fact, the Normal distribution

is so predominantly observed around

us due to the fact that following the

CLT, many variables converge to

Normal.

Since many concepts and events are a
sum or an average of different effects,
CLT applies and we observe normality
all the time. For example, in regression
analysis, the dependent variable is
explained through the sum of error
terms.

Click here for a CLT simulator.
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Estimators and Estimates

Estimators Estimates

Broadly, an estimator is a mathematical function that
approximates a population parameter depending only on
sample information.

Examples of estimators and the corresponding parameters:

Term Estimator Parameter

Mean ഥ𝒙 μ

Variance 𝒔𝟐 𝝈𝟐

Correlation r ρ

An estimate is the output that you get from the estimator
(when you apply the formula). There are two types of
estimates: point estimates and confidence interval
estimates.

Point    
estimates

Confidence 
intervals

A single value.

Examples:

• 1
• 5
• 122.67
• 0.32

An interval.

Examples:

• ( 1 , 5 )
• ( 12 , 33)
• ( 221.78 , 745.66)
• ( - 0.71 , 0.11 )

Estimators have two important properties:

• Bias
The expected value of an unbiased estimator is the population
parameter. The bias in this case is 0. If the expected value of an
estimator is (parameter + b), then the bias is b.
• Efficiency
The most efficient estimator is the one with the smallest
variance.

Confidence intervals are much more precise than point
estimates. That is why they are preferred when making
inferences.
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Confidence Intervals and the Margin of Error

Definition: A confidence interval is an interval within which we are confident (with a certain percentage of confidence) the population parameter will fall.

We build the confidence interval around the point estimate.

(1-α) is the level of confidence. We are (1-α)*100% confident that the population parameter will fall in the specified interval. Common alphas are: 0.01, 0.05, 0.1.

General formula:

[ ത𝒙 - ME, ത𝒙+ ME ] ,where ME is the margin of error.

ME = reliability factor∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

Interval start Interval endPoint estimate

𝒛𝜶/𝟐 ∗
𝝈

𝒏

𝒕υ,𝜶/𝟐 ∗
𝒔

𝒏

Term Effect on width of CI

(1-α) ↑ ↑

𝝈 ↑ ↑

n ↑ ↓
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Student’s T Distribution

The Student’s T distribution is used

predominantly for creating confidence

intervals and testing hypotheses with

normally distributed populations when

the sample sizes are small. It is

particularly useful when we don’t have

enough information or it is too costly to

obtain it.

All else equal, the Student’s T distribution

has fatter tails than the Normal distribution

and a lower peak. This is to reflect the

higher level of uncertainty, caused by the

small sample size.

Student’s T distribution

Normal distribution
A random variable following the t-distribution is denoted 𝑡υ,α , where υ are the degrees of freedom.

We can obtain the student’s T distribution for a variable with a Normally distributed population using the formula: 𝑡υ,α = 
ҧ𝑥−𝜇

𝑠/ 𝑛
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Formulas for Confidence Intervals

𝒛𝜶/𝟐 ∗
𝝈

𝒏

𝒕𝒅.𝒇.,𝜶/𝟐 ∗
𝒔

𝒏

# populations
Population 

variance
Samples Statistic Variance Formula

One known - z 𝜎2 തx ± z Τα 2

σ

n

One unknown - t 𝑠2 തx ± 𝑡𝑛−1, Τα 2

s

n

Two - dependent t 𝑠𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 തd ± 𝑡𝑛−1, Τα 2

𝑠𝑑

n

Two Known independent z σ𝑥
2 , σ𝑦

2
( ҧ𝑥 − ത𝑦) ± 𝑧 Τ𝛼 2

σ𝑥
2

𝑛𝑥
+
σ𝑦
2

𝑛𝑦

Two

unknown, 

assumed 

equal

independent t
𝑠𝑝
2 =

𝑛𝑥 − 1 𝑠𝑥
2 + 𝑛𝑦 − 1 𝑠𝑦

2

𝑛𝑥 + 𝑛𝑦 − 2
( ҧ𝑥 − ത𝑦) ± 𝑡 Τ𝑛𝑥+𝑛𝑦−2,𝛼 2

𝑠𝑝
2

𝑛𝑥
+
𝑠𝑝
2

𝑛𝑦

Two

unknown, 

assumed 

different

independent t 𝑠𝑥
2 , 𝑠𝑦

2
( ҧ𝑥 − ത𝑦) ± 𝑡 Τυ,𝛼 2

𝑠𝑥
2

𝑛𝑥
+
𝑠𝑦
2

𝑛𝑦
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